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Abstract. We study the spin polarized currents generation in a magnetic (ferromagnetic/ferromagnetic)
tunnel junction by means of adiabatic quantum pumping. Using a scattering matrix approach, it is shown
that a pure spin current can be pumped from one ferromagnetic lead into the adjacent one by adiabatic
modulation of the magnetization and the height of the barrier at the interface in absence of external bias
voltage. We numerically study the characteristic features of the pure spin current and discuss its behavior
for realistic values of the parameters. We show that the generated pure spin current is robust with respect
to the variation of the magnetization strength, a very important feature for a realistic device, and that the
proposed device can operate close to the optimal pumping regime. An experimental realization of a pure
spin current injector is also discussed.

PACS. 72.25.Ba Spin polarized transport in metals – 05.60.Gg Quantum transport – 85.75.-d
Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields

1 Introduction

In the last few years, there has been a considerable interest
in the field of spintronics that aims to use the spins of car-
riers in solid state structures as a new degree of freedom to
carry and transform information [1,2]. Due to the longer
coherent lifetime for the spin of the electrons [3], faster
data processing speed and less electric power consump-
tion, spin-based electronics presents itself as the natural
candidate for the future electronics applications. In order
to obtain the advantages promised by this new technology,
need arises for efficient sources of spin polarized currents
and for appropriate methods of manipulation and detec-
tion of the generated currents [4–12]. Many spintronics
devices, such as the spin valves and magnetic tunneling
junction [13], are associated with the flow of spin polar-
ized charge currents. In these systems both charge current
and spin current coexist. More recently, there has been an
increasing interest in the generation of pure spin current
without an accompanying charge current. Many theoreti-
cal proposals to design such devices, called “spin batteries
charges”, have recently appeared [11,14–20]. The genera-
tion of a pure spin-current is possible if all spin-up elec-
trons flow in one direction and equal amount of spin-down
electrons flow in the opposite direction. Some works have
reported that a ferromagnetic resonance process or a ro-
tating external magnetic field can generate a pure spin
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current which inject into adjacent conductors [17–19]. Ex-
perimentally, to incorporate the electronic spin into the
present semiconductor technology, one has first to resolve
a basic problem: the effective spin-injection from a ferro-
magnetic metal (FM) into a semiconductor [21–23]. Even
though a high purity spin polarized source is now achiev-
able, electron transport through the interface is difficult to
realize. In fact, spin injection from magnetic to normal ma-
terials is reduced due to a large resistivity mismatch [24].
Therefore need arises for novel spin injection methods and
devices. To increase the spin injection efficiency, various
devices have been proposed based on the use of spin Hall
effects [25,26], optical excitations of the spins [27–31] as
well as spin pumping [9,32]. Investigations of quantum
pumping have been developed for quantum dots, quantum
wires [33–35], spin-chains [36], semiconductor heterostruc-
tures [11], magnetic barriers [37], spin-turnstile [38], in
presence of a superconducting lead [39–41], and in carbon-
nanotubes [42,43]. Recently, spin pumping in a hybrid
three terminal device in which a ferromagnetic (FM) and a
semiconducting lead are contacted to an s-wave supercon-
ductor [44] has been studied theoretically. Compared to
such three-terminal structure, a direct spin injection from
a FM lead into an adjacent FM conductor is also attrac-
tive due to recent progresses in electron beam lithography
technique [45]. In fact, such technique allows examination
of transport in individual nanostructures with junctions
configurations from planar films to few atoms contact.
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Fig. 1. The proposed device: two ferromagnetic leads (stripes)
lithographically patterned on a 2DEG and having parallel mag-
netization and in presence of an external gate.

Thus, in the present paper we study the pure spin cur-
rent injection in a magnetic tunnel junction obtained by
contacting two planar ferromagnetic leads (stripes) hav-
ing parallel magnetization (Fig. 1). The spin source in our
system is an adiabatic quantum pump implemented by
the modulation of the magnetization strength in the first
lead and the strength of the barrier at interface between
the electrodes. The proposed device can be considered as a
kind of spin-valve [46] where the adiabatic pumping tech-
nique allows to avoid the use of an external voltage bias.
Although various proposals for spin pumping via cyclic
variation of control parameters have appeared recently, a
systematic study in the case of the magnetic tunnel junc-
tions is lacking and the results show that already this sim-
ple structure has the potential to be used as a pure spin
current injector. To obtain the performances described by
our model in a real device, spin flipping processes have to
be negligible. This assumption is well justified for sample
dimensions much smaller than the spin coherence length.

The paper is organized as follows: in Section 2 we de-
scribe the model Hamiltonian and derive the expression
for the scattering matrix. In Section 3 we calculate the
charge/spin and thermal currents by means of the scatter-
ing matrix approach. In Section 4 we report the numerical
results for the pumped currents. In particular, we discuss
the possibility of obtaining a pure spin current for special
choices of the models parameters and give an estimation of
the efficiency of the pump. The experimental realization of
a pure spin current injector in magnetic tunnel junctions
is also discussed. The Conclusions are given in Section 5.

2 Model Hamiltonian and scattering matrix
approach

The system under investigation consists of two planar fer-
romagnetic electrodes (stripes) in presence of an external
gate (see Fig. 1). If the transverse dimension of the elec-
trodes is less than or equal to the electron mean-free path,

the effective one-dimensional Hamiltonian of the system is:

Ĥ = − �
2

2m
∂2

∂x2
− [J1θ(−x) + J2θ(x)]σ̂ + V δ(x), (1)

where J1 and J2 are the magnetic interaction energies,
θ(x) is the Heaviside step function and δ(x) is the ordinary
Dirac delta function. In the equation (1), the last term
represents the barrier potential at the interface between
the magnetic leads. The operator σ̂ acts only on the spin
of the electrons according to the relations:

σ̂| ↑〉 = | ↑〉 (2)

σ̂| ↓〉 = −| ↓〉, (3)

where the kets | ↑〉, | ↓〉 are eigenfunctions of the projection
of the spin operator along the magnetization axis in both
leads. The eigenfunctions of the Hamiltonian (1) can be
written as a product of the spin states and plane waves in
the following form:

ψ↑(x) = N| ↑〉e±ikF x (4)

ψ↓(x) = N| ↓〉e±ikF x, (5)

where N is some normalization factor. For x �= 0, the
Hamiltonian can be simply written as:

Ha = − �
2

2m
∂2

∂x2
− Jaσ̂, (6)

where a = 1, 2 labels the first (x < 0) or the second (x > 0)
lead. The action of Ha on ψ↑(x) and ψ↓(x) is the following:

Haψσ(x) = Ea
kσψσ(x), (7)

whereEa
kσ = �

2k2

2m −Jaσ. Instead of using the wavefunction
ψσ(x), we introduce the non-spinorial wavefunctions:

φa
σ(x) = N e±ikF pσ

ax, (8)

where kF is the Fermi wavevector in absence of mag-
netization and the adimensional factor pσ

a is defined by
pσ

a =
√

1 + σha, where ha = Ja

εF
. The quantity kF p

σ
a mea-

sures the momentum with respect to the Fermi surface
accounting for the Zeeman splitting effect in presence of
a finite magnetization.

In order to study the transport properties of the
proposed device we employ the scattering matrix ap-
proach [47]. To derive the scattering matrix elements we
have to consider the propagation of a conduction electron
from the lead 1 to the lead 2 and viceversa. In the first
case, the electron wave function in the lead 1 is the fol-
lowing:

φ1
σ(x) = N eikF pσ

1 x + Sσ
11N e−ikF pσ

1 x, (9)

while the transmitted electron wave function in the
lead 2 is:

φ2
σ(x) = Sσ

21N eikF pσ
2 x. (10)
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Analogously in the second case, the electron wave function
in the lead 1 is:

φ1
σ(x) = Sσ

12N e−ikF pσ
1 x, (11)

while in the lead 2 we have:

φ2
σ(x) = N e−ikF pσ

2 x + Sσ
22N eikF pσ

2 x. (12)

In the equations above Sσ
ij represents the scattering ampli-

tudes. In writing the equations (9–12), we have neglected
spin flipping processes. To evaluate the scattering matrix
elements, we have to apply the boundary conditions im-
posed by the presence of the barrier potential and by the
current conservation law at interface between the elec-
trodes. Making so, we obtain the following equations:

φ1
σ(x = 0) = φ2

σ(x = 0) (13)

d

dx
φ1

σ(x)
∣
∣
∣
x=0

− d

dx
φ2

σ(x)
∣
∣
∣
x=0

=
2mV

�2
φ2

σ(x = 0). (14)

Solving the system of equations (13), (14) all the scatter-
ing amplitudes can be determined. The resulting scatter-
ing matrix is the following:

Ŝσ =

(
2pσ

1
∆ − 1 2pσ

2
∆

2pσ
1

∆
2pσ

2
∆ − 1

)

, (15)

where ∆ = pσ
1 + pσ

2 − iz, while z = 2mV
kF �2 . Furthermore, by

direct calculation it is immediate to verify the following
property:

|Sσ
11|2 + Sσ∗

12 Sσ
21 = 1, (16)

where Sσ∗
ij is the complex conjugate.

3 Currents and noise

In order to generate a pure spin current in our system in
the absence of a net charge current, we propose to use the
adiabatic quantum pumping [48]. A quantum pump it’s a
device that generates a d.c. current by the adiabatic cyclic
variation of two system control parameters in the absence
of external voltage bias [49]. To inject a spin polarized
current in the lead 1, one has to modulate two indepen-
dent (out of phase) parameters of the device. Namely, we
modulate the magnetization strength in the lead 1 and the
contact barrier strength at the junction:

h1 = h0 + hω sin(ωt+ ϕ), (17)

z = z0 + zω sin(ωt), (18)

where ϕ is the phase difference. In the weak pumping
regime (h0 � hω, z0 � zω), the injected current in a given
lead is proportional to the area enclosed in the parameters
space by a pumping cycle by the quantity ωq sin(ϕ)

2π zωhω.

The sinϕ behavior is lost in the strong pumping regime
(h0 � hω, z0 � zω). In the zero temperature limit, the
current pumped with arbitrary spin σ in the lead 1 can
be derived by the following formula [48]:

I1σ =
ωq

2π

∫ τ

0

dt
∑

l=1,2

dN1σ

dXl

dXl

dt
, (19)

wherein τ = 2π
ω is the period of the forcing signals, ω

is the pumping frequency and q represents the electron
charge. The quantity dN1σ

dXl
is the so-called electronic emis-

sivity [50,51] and is given by:

dN1σ

dXl
=

1
2π

�
⎧

⎨

⎩

∑

j=1,2

Sσ∗
1j ∂Xl

Sσ
1j

⎫

⎬

⎭
, (20)

with l = 1, 2. In our notations, � denotes the imaginary
part, while we fixed the pumping parameters as X1

.= z
and X2

.= h1. Therefore, the charge current Ich and the
spin current Isp in the first lead are given by:

Ich = I↑ + I↓ (21)
Isp = I↑ − I↓, (22)

where we omitted the lead index for simplicity. In the
weak pumping regime the explicit expression for the cur-
rent with spin σ is:

Iσ = − σ
hωzωωq sin(ϕ)
4π(1 + pσ

2 )7
× {(17 + 7pσ

2 )(2h2σ + h2
2)

+ 2(9 + 3pσ
2 − pσ2

2 + 5pσ3
2 )}. (23)

To evaluate the efficiency of the pump we estimate the
energy dissipation in the system [52,53]. As known, heat
current accompanied by dissipation is produced by the
pump. A lower bound for the dissipation in the system
is given by the difference between the heat current and
the net total charge flowing which should be greater than
the power of Joule heat [52]. If the heat current equals the
power of Joule heat than the pump is optimal. This implies
that the charge transport is quantized and the pump is
noiseless. As shown in reference [54] the heat current in
lead 1 at zero temperature is given by:

E1σ =
1

8πτ

∑

j=1,2

∫ τ

0

dt[(∂tŜσ)Ŝσ†]1j [Ŝσ(∂tŜσ†)]j1, (24)

where the above relation holds both in the weak and
strong pumping regime. In the adiabatic regime, neglect-
ing terms of order greater than ω2, the above equation
becomes [54]:

E1σ =
1

8πτ

∑

j=1,2

∑

l,l′

∫ τ

0

dt(∂Xl
Sσ

1j)(∂Xl′Sσ†
1j )∂tXl∂tXl′ .

(25)
Since there are no correlations between electrons with dif-
ferent spin indices[10] the heat current will be the same
for both the charge and spin current, thus we can write:

Ech = Esp = E↑ + E↓. (26)
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The power of Joule heat is defined as:

Jh =
πh

2τq2

∫ τ

0

dt(dQ/dt)2, (27)

where Q is the pumped charge (I = Q/τ) and dQ/dt =
q
∑

l=1,2
dN1σ

dXl

dXl

dt . In the weak pumping regime the first
non vanishing contribution to Jh is of the order ∼
O((hω/h0 + zω/z0)2) and is proportional to cos(2ϕ). In
the following we will evaluate numerically the bound for
dissipation.

4 Model parameters and numerical results

The parameters of the magnetic junction model under
consideration are: the magnetization ha (a = 1, 2), the
contact barrier strength z and the frequency of the adia-
batic pumping ω. First of all, we have to find a condition
on ω which allows to consider the pumping as adiabatic.
By definition, the forcing signal is adiabatic when it varies
on a temporal scale much longer than the characteristic
time scales present in the system. At zero temperature and
in absence of additional scatterers (disorder), the charac-
teristic time scale is set by �

εF
. If finite temperature ef-

fects due to an external thermal bath would be taken into
account, an additional energy scale arises in the system
(∼ KBTB, where TB is the bath temperature). Therefore,
the system will be in the adiabatic regime when:

ω � min
{
εF
�
,
KBTB

�

}

. (28)

At a temperature of 0.1 K, KBTB

�
is about 1.3×104 MHz,

while at T = 0.01 K it assumes the value of 1.3×103 MHz.
From these numerical estimates, the pumping can be
safely considered adiabatic for frequency ranging up to
∼100 MHz. Concerning the contact barrier strength, we
consider values of z0 and zω ranging from 0 to 5. Finally,
the typical values of the parameters h0 and h2 in a ferro-
magnetic lead range from ∼0.1 to ∼0.9 [44,55].

In the following we report the results obtained for
the charge and spin currents normalized by ωq

2π in the
strong pumping regime and for parallel magnetization in
the leads. In Figure 2 we show both the spin and charge
currents as a function of the phase ϕ and fixing the remain-
ing parameters as follows: h0 = 0.1, hω = 0.8, h2 = 0.1,
z0 = 0.4 and zω = 1.6. First, one observes that the sinϕ
behavior is lost in the strong pumping regime. Second,
the charge and spin currents do not present the same ze-
ros and have different amplitudes. This feature enables
to single out special values of ϕ which exactly cancel the
charge current in the presence of a net nonzero spin cur-
rent. Varying the value of hω and zω the same features
for the zeros of the currents are found, but different val-
ues of the amplitudes for the charge and spin currents are
obtained. In particular, at larger values of hω correspond
larger values of the spin current compared to the charge
one. Since our focus is the use of the device as a pure spin
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Fig. 2. The pumped current of spin (dashed line) and charge
(full line) as a function of the phase difference ϕ in the strong
pumping regime for the following choice of parameters: h0 =
0.1, hω = 0.8, h2 = 0.1, z0 = 0.4 and zω = 1.6. Notice that the
sinusoidal behavior of the current-phase relation is lost in this
regime.
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Fig. 3. The pumped pure spin currents as a function of hω

obtained for the following choice of parameters: h0 = 0.1, h2 =
0.1, z0 = 0.4 and zω = 1.6. The upper curve (full line) is
obtained for ϕ close to 2π, while the lower curve (dashed line)
is obtained setting ϕ close to π/4.

current injector, we consider the values of the phase dif-
ference which correspond to a pure spin current with the
maximum value. In Figures 3 and 5–7 we report the pure
spin current as a function of the parameters zω, hω, h2 and
z0, respectively. By analyzing the curves, we observe that
the proposed device as a function of zω and hω presents
threshold-like behavior going from the weak to the strong
pumping regime. Indeed, looking at the Figure 3, for mag-
netization values below a critical value hc

ω 
 0.2, the pure
spin current is small and has a linear behavior in agree-
ment with equation (23). Above hc

ω one enters the strong
pumping regime where the spin current increases rapidly.
In fact, as shown in Figure 4, for values of hω below hc

ω,
the zeros of the charge current are close to the zeros of
the spin current. When hω is increased towards hc

ω the
current-phase relation for the charge current is modified
by the contribution of higher order harmonics (sin 2ϕ,...).
Consequently, its zeros move from those of the spin cur-
rent and start to correspond to sizable value of pure spin
current (as shown in Fig. 4). More we enter the strong-
pumping regime, more the charge current zeros approach
the maximum of the spin current. Similar threshold-like
behavior is observed in the pure spin-current as a function
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Fig. 4. The pumped currents of spin (dashed line) and charge
(full line) as a function of the phase difference ϕ for the fol-
lowing choice of parameters: h0 = 0.1, h2 = 0.1, z0 = 0.4
and zω = 1.6 and different values (from bottom to top) of
hω = 0.05, 0.2, 0.225, 0.25.
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Fig. 5. The pumped pure spin currents as a function of zω

obtained for the following choice of parameters: h0 = 0.1, h2 =
0.1, hω = 0.8 and z0 = 0.4. The upper curve (full line) is
obtained for ϕ close to 3/2π, while the lower curve (dashed
line) is obtained setting ϕ close to π/2.
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Fig. 6. The pumped pure spin currents as a function of h2

obtained for the following choice of parameters: h0 = 0.1, hω =
0.8, z0 = 0.4 and zω = 1.6. The upper curve (full line) is
obtained for ϕ close to 3/2π, while the lower curve (dashed
line) is obtained setting ϕ close to π/2.

of zω for a critical value zc
ω ∼ 0.25. In Figure 6 the pure

spin current is plotted as a function of the magnetization
h2. As shown the pumped current remains almost constant
and the device works as an efficient spin injector. We have
verified that as a function of h2 the spin current is sta-
ble for values of zω and hω in the strong pumping regime
hω/h0 � 1, zω/z0 � 1. In Figure 7 we report the pumped
pure spin current as a function of the parameter z0. It can
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Fig. 7. The pumped pure spin currents as a function of z0

obtained for the following choice of parameters: h0 = 0.1, h2 =
0.4, hω = 0.8 and zω = 1.6. The upper curve (full line) is
obtained for ϕ close to 3/2π, while the lower curve (dashed
line) is obtained setting ϕ close to π/2.

be seen that in the vicinity of z0 
 0.35 both the positive
and negative pure spin currents become constant. A be-
havior of the pure spin current similar to that shown in the
previous figures is obtained for antiparallel magnetizations
in the electrodes, the only difference being different values
of the threshold-like parameters in hω and zω. We would
like to stress that if spin-flip processes would be taken
into account, they would change the value of the spin cur-
rent during its flow. Typical spin-flip processes are due
to spin-orbit coupling or magnetic impurities scattering.
Generally, the contribution from spin flipping phenomena
would dynamically affect the spins during the tunneling
process rendering pumping less efficient as a source of spin
polarized currents.

The operational parameters as in Figure 7 (h0 = 0.1,
h2 = 0.4, hω = 0.8, zω = 1.6 and ϕ = π/2, for negative
spin currents or ϕ = 3π/2, for positive spin currents) with
barrier strength close to z0 
 0.35 are particularly suitable
for experiments with ferromagnetic materials patterned on
a two-dimensional electron gas (2DEG). For such set of pa-
rameters the pure spin current pumped within a pumping
cycle has a value close to ∼0.37ωq

2π , which is among the
highest values we have obtained by changing hω and zω.
Taking the frequency ω around 100 MHz, the device gener-
ates pure spin currents approximately equal to 10−11 Am-
peres in the absence of a net charge current. Different sets
of parameters change the value of the spin current pumped
during a pumping cycle, while keeping the same features
presented above.

By using equations (25)–(27) with the above opera-
tional parameters, we have estimated the dissipation in
the system from the difference between the generated heat
current and the power of Joule heat [52]. The dissipated
energy is of the order of the percent (∼0.05) of the total
current energy pumped in the system. If we compare the
magnitude of the heat current and of the power of Joule
heat, we find that the heat current is larger than the power
of Joule heat satisfying the lower bound for dissipation as
predicted in reference [52] and their ratio is of the or-
der 1. This result confirms that the pump we propose can
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operate close to the optimal pumping regime, although the
charge is not quantized. We have verified that the pump
would become completely noiseless in the limit of very
large barrier height.

Form the experimental point of view, the proposed
device can be made by the deposition of two ferromag-
netic stripes on heterostructures. The magnetized ferro-
magnetic materials, like NiFe, Cobalt or Nickel, can be
lithographically patterned on a 2DEG (see Ref. [56,57]
for details). Recently, planar Ni-Ni tunnel junctions and
few atom contacts between planar Ni electrodes have been
realized via e-beam lithography on p+Si wafers [45]. To
experimentally realize the pumping, one can apply an ex-
ternal magnetic field to modulate the strength of magne-
tization of the ferromagnetic stripe, and this is one mod-
ulating factor, the other is the height of the barrier z be-
tween the stripes, which can be modulated by applying
suitable gate voltages, like in the first experimental real-
ization of the quantum pump in dots [58]. Let us stress
that the local magnetization at the interface can be mod-
ulated continuously since it is related to the bulk magne-
tization and is not due to a single magnetic domain as in
the case of a point contact [45]. Another method of ex-
perimentally realizing our proposal could be to put two
stripes of ferromagnetic materials of different susceptibil-
ities side by side and applying an external magnetic field.
Modulation of this external field can effectively provide
spin-polarized currents induced by the temporal variation
of the two magnetization. The estimated value of the pure
spin current in this case is still of the order of 10−11 Am-
peres, which makes this method particular suitable for
an experimental realization. Very recently spin dependent
transport has been realized in magnetic semiconductors
tunnel junctions [59,60] offering another potential appli-
cation of adiabatic pumping.

5 Conclusions

In conclusion we have proposed a pure spin current injec-
tor based on the adiabatic quantum pumping mechanism
and on the spin selective properties of the transmission co-
efficient in a magnetic (ferromagnetic/ferromagnetic) tun-
nel junction. The transfer of charge/spins in the device is
obtained by the adiabatic quantum pumping mechanism
in absence of external voltage bias, unlike traditional spin
batteries, reducing the problem of magnetization loss at
the interface. By varying the strength of the pumping pa-
rameters, namely the magnetization strength in one lead
and the barrier strength at interface between the elec-
trodes, we can generate a pure spin current. This current
presents a robust behavior with respect to the variation
of the magnetization strength (Fig. 6), a very important
feature for a realistic device. By means of the scattering
matrix approach, the pumped spin current per cycle has
been evaluated of the order 10 pA for a pumping frequency
100 MHz. An evaluation of dissipation in the system, by
comparing the heat current and the power of Joule heat
produced by the electric current, shows that the device

operates close to the optimal pump regime for the oper-
ational parameters under consideration. Our results show
that the application of adiabatic pumping to a single mag-
netic junction offers the possibility for an efficient spin
pump mechanism in the present technology.

We thank Prof. M. Marinaro and C. Benjamin for useful discus-
sions. We also thank G. Carapella for enlightening discussions
on the experimental aspects of the proposed device.
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